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1, INTRODUCTION

The space industry has developed many composite materials that have been designed to

have high durability in proportion to their weights. Many of these materials have a likelihood for

flaws that is higher than in traditional metals. There are also material coverings (such as paint)

that develop flaws that may adversely affect the performance of the system in which they are
used. Therefore, there is a need to monitor the soundness of composite structures. To meet this

monitoring need, many nondestructive evaluation (NDE) systems have been developed. An NDE

system is designed to detect material flaws and make flaw measurements without destroying the
inspected item. Also, the detection operation is expected to be performed in a rapid manner in a

field or production environment.

Within the last few years, several video-based optical NDE methodologies have been
introduced. Some of the most recent of these methodologies are shearography, holography,

thermography, and video image correlation. A detailed description of these may be found in Chu

et al. (1985), Hung (1982), and Russell and Sutton (1989).

This research focuses on a performance evaluation of shearography equipment. Users of

this equipment realize that performance is a function of a set of control variables as well as a set
of noise variables. However, there is a shortage of research that characterizes this relationship in

model form. Hence, this project has four major objectives:

(1) Identify the control and noise variables that are most likely to influence

shearography performance.

(2) Define a model that connects equipment output to control and noise variables.

(3) Determine the control and noise variables and their interactions that have significant

influence on shearograph performance.

(4) Identify the setting for control variables that will optimize equipment performance.

At this setting, compute a probability of detection (POD) curve.

Due to the necessary shortness of this research period, objective (1) is achieved through

engineering judgment. The remainder of this paper addresses objectives (2) through (4).

In the following discussion, y is considered to be an output from an NDE inspection

system. Output y is assumed to be a random variable with some probability distribution. Depend-

ing on the system, y is either continuous (eddy current is an example) or binary (shearography is

an example). Berens and Hovey (1984) described an a-hat analysis method for a continuous y
and a hit/miss methodology for systems that produce binary output. For completeness, this report

discusses a setup where the continuous y is expressed as a function of control and noise vari-

ables. A similar setup is discussed for binary y along with a prescription for achieving the above-

mentioned objectives.

2, CONTINUOUS OUTPUT VARIABLE

Assume that y is'the continuous output of an NDE inspection system with a normal

probability distribution of mean /z. Further assume that control variables xl, x2 ..... xk and
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noncontrollable noise variables Zl, z2 ..... Zm have an influence on output y. For compactness, let

control vector X = (xl, x2 ..... xD" and noise vector Z = (zl, z2 ..... Zm)'. A general equation that

connects output y to X and Z is

Y = to + X'_ + Z'._+ X'AZ + e , (2.1)

where/] is a general parameter of vector coefficients of control variables, _ is a coefficient vector
of noise variables, A is a matrix which contains the coefficients of the interactions between noise

and control variables, and e is a random lack of fit component.

Model (2.1) generates two response surfaces that are of benefit to NDE performance

evaluation. They are system output mean which is given by

E[y] = la = to + X',_ , (2.2)

and system output variance

o t

Varty] = or2= [_ +X'A] V [_ +X'A]' , (2.3)

where V is the variance-covariance matrix for noise variables in g Observed data on y, X, and Z

may be used to estimate parameter values to, _, ._, and A. Prior observations on z (perhaps field

data) are used to estimate V. Once parameters are estimated, hypotheses tests may be performed
to determine if control and/or noise variables have an influence on NDE performance. In particu-
lar, NDE evaluators are interested in variable interactions.

The reader may recognize components of the Taguchi methodology in this presentation.

Actually, model (2.1) remedies some of the shortcomings in the Taguchi method. In fact, unlike

Taguchi, model (2.1) provides for interaction analysis and allows a complete analysis of output

behavior with respect to changes in control variables. Myers et al. (1992) give a description of

model (2.1) and details its connection to the Taguchi method. In this paper, we apply model (2.1)

to the evaluation of NDE equipment performance.

Application Example

To illustrate the usefulness of model (2.1) to bIDE performance evaluation, we use an

example constructed by Myers et al. (1992). For our case, we pretend that there are two control

(xl, x2) and two noise (Zl, z2) variables for which (2.1), (2.2), and (2.3) become (2.1)', (2.2)', and

(2.3)', respectively.

Y = flo + x lfll + x2f12 + 61z I + _2 z 2 + '_ 11x 1z I + _' 12x 1z 2

+ _21x2z 1 +/_22x2z2 + E
(2.1)"

E[Y] = to + Xlfll + x2_2 , (2.2)"
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Var(Y) = _1 t_j4 + 2 Xl(t$1,_llO'l + t_2,_12 4) + 2 X2(t_l_21 4 + t_2,a,2242)
j=

2 2

2 2 X1X2(XllX210. _ _,12_,224)+4

(2.3)"

In (2.2)" and (2.3)',

var (e)= cr2 .

= var(gO= V= [ ° ]0 o_2 ' and

For the variables used to construct (2.1)" through (2.3)', if a statistical analysis shows that

132 = 0 while all other parameters in (2.1)" are nonzero, then (2.2)" and (2.3)" show that an

adjustment on control variable x2 affects Var[Y] and has no effect on mean ELY]. Additional

comments about this situation appear in the data analysis section.

3. BINARY OUTPUT VARIABLE

In many NDE systems, the output is 1 or 0 where 1 represents a flaw detection and 0
denotes a nondetection. This output variable y is said to be binary or hit/miss. For each single

flaw inspection, it is assumed that p is the probability of flaw detection and thus y has a Bernoulli

probability mass function fly) = py(1-p)Y -1. The mean of y is given by

E[y] =/1 =p. (3.1)

It is desirable to devise a setup for output y that is similar to (2.1). One difficulty, among

many, is that the variance Var(y) =p(1-p) which is not constant over flaw size and model (2.1)

requires a constant variance. However, the difficulties posed by the binary nature of y are reme-

died by using (3.1) to express mean # (i.e., p) as a function of control variables X and noise vari-

ables Z. Such a remedy is offered by Beren and Hovey (1984) where they expressp as a function

of one variable (crack size). They also listed seven candidate relationships between crack size

and probability of detection. Of their seven, this research uses their recommendation that the

logistic relationship best describes the connection between p and crack size a. This research is

also the first that we could find where p is expressed as a function of control vector X and noise

vector Z for NDE equipment.

For variables a and p, as defined above, the logistic relationship is

eB0+Ot" (3.2)
p = l+eBO+/h a ,

where fit), fll are constants. A transformation of (3.2) gives

ln(1-_)=flo+flla . (3.3)
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performance even with the low cell counts provided we used an alternative to the full six-

factorial design. Thus, we chose to analyze the collected data by using a two-factorial experiment

to analyze each combination in the set of all possible two-variable subset combinations. The

analysis is repeated for all possible three-variable subset combinations. Each analysis included a
test of significance of at most two-variable interactions and a test for main affects. Of all the

possible two-variable and three-variable analyses, Table 1 shows what variables showed at least

one single significant main affect (row 1) or was involved in at least one significant interaction

(row 2). Significance here means that the probability level of the estimated coefficient was 0.05
or less.

Table 1 Size Shear Heat Orient FOV Light
X X X

X X X X

Since FOV and light are not checked in Table 1, we deleted them and performed a

qualitative analysis with size (3,6,9), shear (0,2,4), heat (5,10), and orientation (-1,1) as

independent variables. The significant terms from this analysis are as shown in equation (5.1).

In (Pl_--_/) = 0.6337 (ai*h) + 0.8498 (ai*s)-4.09 (r) + 1.861 (ai*r) + 0.2268 (h'r)
(5.1)

where ai =- flaw size, h = heat, r = orientation, s - shear, and E[X] = a, as discussed in section 4.

6, CONCLUSION

Table 1 shows that FOV and light were deleted from experimental models because they

were judged to be insignificant. An inspection of (5.1) shows size and shear are not significant
"stand alone" variables. However, they each are part of a significant interaction. These

interactions suggest that heat and shear are control variables that influence the probability of

detection for shearography. These control variables interact with size and orientation. A

transformation of (5.1) to form (3.2) gives the average POD curve formula.
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